Note
Go to the end to download the full example code.
3-D scatter plots
The pygmt.Figure.plot3d
method can be used to plot symbols in 3-D.
In the example below, we show how the
Iris flower dataset
can be visualized using a perspective 3-D plot. The region
parameter has to include the \(x\), \(y\), \(z\) axis limits in the
form of (xmin, xmax, ymin, ymax, zmin, zmax), which can be done automatically
using pygmt.info
. To plot the z-axis frame, set frame
as a
minimum to something like frame=["WsNeZ", "zaf"]
. Use perspective
to
control the azimuth and elevation angle of the view, and zscale
to adjust
the vertical exaggeration factor.
import pandas as pd
import pygmt
# Load sample iris data
df = pd.read_csv("https://github.com/mwaskom/seaborn-data/raw/master/iris.csv")
# Convert 'species' column to categorical dtype
# By default, pandas sorts the individual categories in an alphabetical order.
# For a non-alphabetical order, you have to manually adjust the list of
# categories. For handling and manipulating categorical data in pandas,
# have a look at:
# https://pandas.pydata.org/docs/user_guide/categorical.html
df.species = df.species.astype(dtype="category")
# Make a list of the individual categories of the 'species' column
# ['setosa', 'versicolor', 'virginica']
# They are (corresponding to the categorical number code) by default in
# alphabetical order and later used for the colorbar labels
labels = list(df.species.cat.categories)
# Use pygmt.info to get region bounds (xmin, xmax, ymin, ymax, zmin, zmax)
# The below example will return a numpy array [0.0, 3.0, 4.0, 8.0, 1.0, 7.0]
region = pygmt.info(
data=df[["petal_width", "sepal_length", "petal_length"]], # x, y, z columns
per_column=True, # Report the min/max values per column as a numpy array
# Round the min/max values of the first three columns to the nearest
# multiple of 1, 2 and 0.5, respectively
spacing=(1, 2, 0.5),
)
# Make a 3-D scatter plot, coloring each of the 3 species differently
fig = pygmt.Figure()
# Define a colormap for three categories, define the range of the
# new discrete CPT using series=(lowest_value, highest_value, interval),
# use color_model="+csetosa,versicolor,virginica" to write the discrete color
# palette "cubhelix" in categorical format and add the species names as
# annotations for the colorbar
pygmt.makecpt(
cmap="cubhelix",
# Use the minimum and maximum of the categorical number code
# to set the lowest_value and the highest_value of the CPT
series=(df.species.cat.codes.min(), df.species.cat.codes.max(), 1),
# Convert ['setosa', 'versicolor', 'virginica'] to
# 'setosa,versicolor,virginica'
color_model="+c" + ",".join(labels),
)
fig.plot3d(
# Use petal width, sepal length, and petal length as x, y, and z
# data input, respectively
x=df.petal_width,
y=df.sepal_length,
z=df.petal_length,
# Vary each symbol size according to the sepal width, scaled by 0.1
size=0.1 * df.sepal_width,
# Use 3-D cubes ("u") as symbols with size in centimeters ("c")
style="uc",
# Points colored by categorical number code (refers to the species)
fill=df.species.cat.codes.astype(int),
# Use colormap created by makecpt
cmap=True,
# Set map dimensions (xmin, xmax, ymin, ymax, zmin, zmax)
region=region,
# Set frame parameters
frame=[
"WsNeZ3+tIris flower data set", # z axis label positioned on 3rd corner, add title
"xafg+lPetal Width (cm)",
"yafg+lSepal Length (cm)",
"zafg+lPetal Length (cm)",
],
# Set perspective to azimuth NorthWest (315°), at elevation 25°
perspective=[315, 25],
# Vertical exaggeration factor
zscale=1.5,
)
# Shift plot origin in x direction
fig.shift_origin(xshift="3.1c")
# Add colorbar legend
fig.colorbar()
fig.show()
Total running time of the script: (0 minutes 0.437 seconds)