Note
Go to the end to download the full example code
Creating a 3-D perspective image
Create 3-D perspective image or surface mesh from a grid
using pygmt.Figure.grdview
.
import pygmt
# Load sample earth relief data
grid = pygmt.datasets.load_earth_relief(resolution="10m", region=[-108, -103, 35, 40])
The pygmt.Figure.grdview
method takes the grid
input.
The perspective
parameter changes the azimuth and elevation of the
viewpoint; the default is [180, 90], which is looking directly down on the
figure and north is “up”. The zsize
parameter sets how tall the
three-dimensional portion appears.
The default grid surface type is mesh plot.
fig = pygmt.Figure()
fig.grdview(
grid=grid,
# Sets the view azimuth as 130 degrees, and the view elevation as 30
# degrees
perspective=[130, 30],
# Sets the x- and y-axis labels, and annotates the west, south, and east
# axes
frame=["xa", "ya", "WSnE"],
# Sets a Mercator projection on a 15-centimeter figure
projection="M15c",
# Sets the height of the three-dimensional relief at 1.5 centimeters
zsize="1.5c",
)
fig.show()
The grid surface type can be set with the surftype
parameter.
The default CPT is turbo and can be customized with the cmap
parameter.
fig = pygmt.Figure()
fig.grdview(
grid=grid,
perspective=[130, 30],
frame=["xa", "yaf", "WSnE"],
projection="M15c",
zsize="1.5c",
# Set the surftype to "surface"
surftype="s",
# Set the CPT to "geo"
cmap="geo",
)
fig.show()
The plane
parameter sets the elevation and color of a plane that provides
a fill below the surface relief.
fig = pygmt.Figure()
fig.grdview(
grid=grid,
perspective=[130, 30],
frame=["xa", "yaf", "WSnE"],
projection="M15c",
zsize="1.5c",
surftype="s",
cmap="geo",
# Set the plane elevation to 1,000 meters and make the fill "gray"
plane="1000+ggray",
)
fig.show()
The perspective
azimuth can be changed to set the direction that is “up”
in the figure. The contourpen
parameter sets the pen used to draw contour
lines on the surface. pygmt.Figure.colorbar
can be used to add a
color bar to the figure. The cmap
parameter does not need to be passed
again. To keep the color bar’s alignment similar to the figure, use True
as argument for the perspective
parameter.
fig = pygmt.Figure()
fig.grdview(
grid=grid,
# Set the azimuth to -130 (230) degrees and the elevation to 30 degrees
perspective=[-130, 30],
frame=["xaf", "yaf", "WSnE"],
projection="M15c",
zsize="1.5c",
surftype="s",
cmap="geo",
plane="1000+ggrey",
# Set the contour pen thickness to "0.1p"
contourpen="0.1p",
)
fig.colorbar(perspective=True, frame=["a500", "x+lElevation", "y+lm"])
fig.show()
Total running time of the script: (0 minutes 0.951 seconds)