Source code for pygmt.src.sphinterpolate

"""
sphinterpolate - Spherical gridding in tension of data on a sphere
"""

from pygmt.clib import Session
from pygmt.helpers import build_arg_list, fmt_docstring, kwargs_to_strings, use_alias

__doctest_skip__ = ["sphinterpolate"]


[docs] @fmt_docstring @use_alias( I="spacing", R="region", V="verbose", ) @kwargs_to_strings(I="sequence", R="sequence") def sphinterpolate(data, outgrid: str | None = None, **kwargs): r""" Create spherical grid files in tension of data. Reads a table containing *lon, lat, z* columns and performs a Delaunay triangulation to set up a spherical interpolation in tension. Several options may be used to affect the outcome, such as choosing local versus global gradient estimation or optimize the tension selection to satisfy one of four criteria. Full option list at :gmt-docs:`sphinterpolate.html` {aliases} Parameters ---------- data : str, {table-like} Pass in (x, y, z) or (longitude, latitude, elevation) values by providing a file name to an ASCII data table, a 2-D {table-classes}. {outgrid} {spacing} {region} {verbose} Returns ------- ret: xarray.DataArray or None Return type depends on whether the ``outgrid`` parameter is set: - :class:`xarray.DataArray` if ``outgrid`` is not set - None if ``outgrid`` is set (grid output will be stored in file set by ``outgrid``) Example ------- >>> import pygmt >>> # Load a table of Mars with longitude/latitude/radius columns >>> mars_shape = pygmt.datasets.load_sample_data(name="mars_shape") >>> # Perform Delaunay triangulation on the table data >>> # to produce a grid with a 1 arc-degree spacing >>> grid = pygmt.sphinterpolate(data=mars_shape, spacing=1, region="g") """ with Session() as lib: with ( lib.virtualfile_in(check_kind="vector", data=data) as vintbl, lib.virtualfile_out(kind="grid", fname=outgrid) as voutgrd, ): kwargs["G"] = voutgrd lib.call_module( module="sphinterpolate", args=build_arg_list(kwargs, infile=vintbl) ) return lib.virtualfile_to_raster(vfname=voutgrd, outgrid=outgrid)