"""meca - Plot focal mechanisms."""importnumpyasnpimportpandasaspdfrompygmt.clibimportSessionfrompygmt.exceptionsimportGMTError,GMTInvalidInputfrompygmt.helpersimportbuild_arg_string,fmt_docstring,kwargs_to_strings,use_aliasdefdata_format_code(convention,component="full"):""" Determine the data format code for meca's -S option. See the meca() method for explanations of the parameters. Examples -------- >>> data_format_code("aki") 'a' >>> data_format_code("gcmt") 'c' >>> data_format_code("partial") 'p' >>> data_format_code("mt", component="full") 'm' >>> data_format_code("mt", component="deviatoric") 'z' >>> data_format_code("mt", component="dc") 'd' >>> data_format_code("principal_axis", component="full") 'x' >>> data_format_code("principal_axis", component="deviatoric") 't' >>> data_format_code("principal_axis", component="dc") 'y' >>> for code in ["a", "c", "m", "d", "z", "p", "x", "y", "t"]: ... assert data_format_code(code) == code ... >>> data_format_code("invalid") Traceback (most recent call last): ... pygmt.exceptions.GMTInvalidInput: Invalid convention 'invalid'. >>> data_format_code("mt", "invalid") # doctest: +NORMALIZE_WHITESPACE Traceback (most recent call last): ... pygmt.exceptions.GMTInvalidInput: Invalid component 'invalid' for convention 'mt'. """# Codes for focal mechanism formats determined by "convention"codes1={"aki":"a","gcmt":"c","partial":"p"}# Codes for focal mechanism formats determined by both "convention" and# "component"codes2={"mt":{"deviatoric":"z","dc":"d","full":"m"},"principal_axis":{"deviatoric":"t","dc":"y","full":"x"},}ifconventionincodes1:returncodes1[convention]ifconventionincodes2:ifcomponentnotincodes2[convention]:raiseGMTInvalidInput(f"Invalid component '{component}' for convention '{convention}'.")returncodes2[convention][component]ifconventionin["a","c","m","d","z","p","x","y","t"]:returnconventionraiseGMTInvalidInput(f"Invalid convention '{convention}'.")@fmt_docstring@use_alias(A="offset",B="frame",C="cmap",E="extensionfill",G="compressionfill",J="projection",N="no_clip",R="region",V="verbose",W="pen",c="panel",p="perspective",t="transparency",)@kwargs_to_strings(R="sequence",c="sequence_comma",p="sequence")defmeca(self,spec,scale,convention=None,component="full",longitude=None,latitude=None,depth=None,plot_longitude=None,plot_latitude=None,event_name=None,**kwargs,):r""" Plot focal mechanisms. Full option list at :gmt-docs:`supplements/seis/meca.html` {aliases} Parameters ---------- spec : str, 1-D array, 2-D array, dict, or pd.DataFrame Data that contains focal mechanism parameters. ``spec`` can be specified in either of the following types: - *str*: a file name containing focal mechanism parameters as columns. The meaning of each column is: - Columns 1 and 2: event longitude and latitude - Column 3: event depth (in km) - Columns 4 to 3+n: focal mechanism parameters. The number of columns *n* depends on the choice of ``convection``, which will be described below. - Columns 4+n and 5+n: longitude, latitude at which to place beachball. Using ``0 0`` will plot the beachball at the longitude, latitude given in columns 1 and 2. [optional and requires ``offset=True`` to take effect]. - Text string to appear near the beachball [optional]. - *1-D array*: focal mechanism parameters of a single event. The meanings of columns are the same as above. - *2-D array*: focal mechanim parameters of multiple events. The meanings of columns are the same as above. - *dictionary or pd.DataFrame*: The dictionary keys or pd.DataFrame column names determine the focal mechanims convention. For different conventions, the following combination of keys are allowed: - ``"aki"``: *strike, dip, rake, magnitude* - ``"gcmt"``: *strike1, dip1, rake1, strike2, dip2, rake2, mantissa,* *exponent* - ``"mt"``: *mrr, mtt, mff, mrt, mrf, mtf, exponent* - ``"partial"``: *strike1, dip1, strike2, fault_type, magnitude* - ``"principal_axis"``: *t_value, t_azimuth, t_plunge, n_value, n_azimuth, n_plunge, p_value, p_azimuth, p_plunge, exponent* A dictionary may contain values for a single focal mechanism or lists of values for multiple focal mechanisms. Both dictionary and pd.DataFrame may optionally contain keys/column names: ``latitude``, ``longitude``, ``depth``, ``plot_longitude``, ``plot_latitude``, and/or ``event_name``. If ``spec`` is either a str, a 1-D array or a 2-D array, the ``convention`` parameter is required so we know how to interpret the columns. If ``spec`` is a dictionary or a pd.DataFrame, ``convention`` is not needed and is ignored if specified. scale : str Adjust the scaling of the radius of the beachball, which is proportional to the magnitude. *scale* defines the size for magnitude = 5 (i.e. scalar seismic moment M0 = 4.0E23 dynes-cm). convention : str Focal mechanism convention. Choose from: - ``"aki"`` (Aki & Richards) - ``"gcmt"`` (global CMT) - ``"mt"`` (seismic moment tensor) - ``"partial"`` (partial focal mechanism) - ``"principal_axis"`` (principal axis) Ignored if ``spec`` is a dictionary or pd.DataFrame. component : str The component of the seismic moment tensor to plot. - ``"full"``: the full seismic moment tensor - ``"dc"``: the closest double couple defined from the moment tensor (zero trace and zero determinant) - ``"deviatoric"``: deviatoric part of the moment tensor (zero trace) longitude : int, float, list, or 1-D numpy array Longitude(s) of event location(s). Must be the same length as the number of events. Will override the ``longitude`` values in ``spec`` if ``spec`` is a dictionary or pd.DataFrame. latitude : int, float, list, or 1-D numpy array Latitude(s) of event location(s). Must be the same length as the number of events. Will override the ``latitude`` values in ``spec`` if ``spec`` is a dictionary or pd.DataFrame. depth : int, float, list, or 1-D numpy array Depth(s) of event location(s) in kilometers. Must be the same length as the number of events. Will override the ``depth`` values in ``spec`` if ``spec`` is a dictionary or pd.DataFrame. plot_longitude : int, float, str, list, or 1-D numpy array Longitude(s) at which to place beachball(s). Must be the same length as the number of events. Will override the ``plot_longitude`` values in ``spec`` if ``spec`` is a dictionary or pd.DataFrame. plot_latitude : int, float, str, list, or 1-D numpy array Latitude(s) at which to place beachball(s). List must be the same length as the number of events. Will override the ``plot_latitude`` values in ``spec`` if ``spec`` is a dictionary or pd.DataFrame. event_name : str or list of str, or 1-D numpy array Text string(s), e.g., event name(s) to appear near the beachball(s). List must be the same length as the number of events. Will override the ``event_name`` values in ``spec`` if ``spec`` is a dictionary or pd.DataFrame. offset : bool or str [**+p**\ *pen*][**+s**\ *size*]. Offset beachball(s) to longitude(s) and latitude(s) specified in the the last two columns of the input file or array, or by ``plot_longitude`` and ``plot_latitude`` if provided. A small circle is plotted at the initial location and a line connects the beachball to the circle. Use **+s**\ *size* to set the diameter of the circle [Default is no circle]. Use **+p**\ *pen* to set the line pen attributes [Default is ``"0.25p"``]. compressionfill : str Set color or pattern for filling compressive quadrants [Default is ``"black"``]. extensionfill : str Set color or pattern for filling extensive quadrants [Default is ``"white"``]. pen : str Set pen attributes for outline of beachball [Default is ``"0.25p,black,solid"``]. cmap : str File name of a CPT file or a series of comma-separated colors (e.g., *color1,color2,color3*) to build a linear continuous CPT from those colors automatically. The color of the compressive quadrants is determined by the z-value (i.e., event depth or the third column for an input file). no_clip : bool Do **not** skip symbols that fall outside the frame boundaries [Default is ``False``, i.e., plot symbols inside the frame boundaries only]. {projection} {region} {frame} {verbose} {panel} {perspective} {transparency} """# pylint: disable=too-many-arguments,too-many-locals,too-many-brancheskwargs=self._preprocess(**kwargs)# pylint: disable=protected-accessifisinstance(spec,(dict,pd.DataFrame)):# spec is a dict or pd.DataFrameparam_conventions={"aki":["strike","dip","rake","magnitude"],"gcmt":["strike1","dip1","rake1","strike2","dip2","rake2","mantissa","exponent",],"mt":["mrr","mtt","mff","mrt","mrf","mtf","exponent"],"partial":["strike1","dip1","strike2","fault_type","magnitude"],"pricipal_axis":["t_value","t_azimuth","t_plunge","n_value","n_azimuth","n_plunge","p_value","p_azimuth","p_plunge","exponent",],}# determine convention from dict keys or pd.DataFrame column namesforconv,parasinparam_conventions.items():ifset(paras).issubset(set(spec.keys())):convention=convbreakelse:ifisinstance(spec,dict):msg="Keys in dict 'spec' do not match known conventions."else:msg="Column names in pd.DataFrame 'spec' do not match known conventions."raiseGMTError(msg)# override the values in dict/pd.DataFrame if parameters are explicity# specifiediflongitudeisnotNone:spec["longitude"]=np.atleast_1d(longitude)iflatitudeisnotNone:spec["latitude"]=np.atleast_1d(latitude)ifdepthisnotNone:spec["depth"]=np.atleast_1d(depth)ifplot_longitudeisnotNone:spec["plot_longitude"]=np.atleast_1d(plot_longitude)ifplot_latitudeisnotNone:spec["plot_latitude"]=np.atleast_1d(plot_latitude)ifevent_nameisnotNone:spec["event_name"]=np.atleast_1d(event_name).astype(str)# convert dict to pd.DataFrame so columns can be reorderedifisinstance(spec,dict):# convert values to ndarray so pandas doesn't complain about "all# scalar values". See# https://github.com/GenericMappingTools/pygmt/pull/2174spec={key:np.atleast_1d(value)forkey,valueinspec.items()}spec=pd.DataFrame(spec)# expected columns are:# longitude, latitude, depth, focal_parameters,# [plot_longitude, plot_latitude] [event_name]newcols=["longitude","latitude","depth"]+param_conventions[convention]if"plot_longitude"inspec.columnsand"plot_latitude"inspec.columns:newcols+=["plot_longitude","plot_latitude"]spec[["plot_longitude","plot_latitude"]]=spec[["plot_longitude","plot_latitude"]].astype(str)ifkwargs.get("A")isNone:kwargs["A"]=Trueif"event_name"inspec.columns:newcols+=["event_name"]spec["event_name"]=spec["event_name"].astype(str)# reorder columns in DataFramespec=spec.reindex(newcols,axis=1)elifisinstance(spec,np.ndarray)andspec.ndim==1:# Convert 1-D array into 2-D arrayspec=np.atleast_2d(spec)# determine data_format from convention and componentdata_format=data_format_code(convention=convention,component=component)# Assemble -S flagkwargs["S"]=data_format+scalewithSession()aslib:# Choose how data will be passed into the modulefile_context=lib.virtualfile_from_data(check_kind="vector",data=spec)withfile_contextasfname:lib.call_module(module="meca",args=build_arg_string(kwargs,infile=fname))