"""grdhisteq - Perform histogram equalization for a grid."""fromtypingimportLiteralimportnumpyasnpimportpandasaspdimportxarrayasxrfrompygmt.clibimportSessionfrompygmt.exceptionsimportGMTInvalidInputfrompygmt.helpersimport(build_arg_list,fmt_docstring,kwargs_to_strings,use_alias,validate_output_table_type,)__doctest_skip__=["grdhisteq.*"]
[docs]classgrdhisteq:# noqa: N801r""" Perform histogram equalization for a grid. Two common use cases of :class:`pygmt.grdhisteq` are to find data values that divide a grid into patches of equal area (:meth:`pygmt.grdhisteq.compute_bins`) or to write a grid with statistics based on some kind of cumulative distribution function (:meth:`pygmt.grdhisteq.equalize_grid`). Histogram equalization provides a way to highlight data that has most values clustered in a small portion of the dynamic range, such as a grid of flat topography with a mountain in the middle. Ordinary gray shading of this grid (using :meth:`pygmt.Figure.grdimage` or :meth:`pygmt.Figure.grdview`) with a linear mapping from topography to graytone will result in most of the image being very dark gray, with the mountain being almost white. :meth:`pygmt.grdhisteq.compute_bins` can provide a list of data values that divide the data range into divisions which have an equal area in the image [Default is 16 if ``divisions`` is not set]. The :class:`pandas.DataFrame` or ASCII file output can be used to make a colormap with :func:`pygmt.makecpt` and an image with :meth:`pygmt.Figure.grdimage` that has all levels of gray occurring equally. :meth:`pygmt.grdhisteq.equalize_grid` provides a way to write a grid with statistics based on a cumulative distribution function. In this application, the ``outgrid`` has relative highs and lows in the same (x,y) locations as the ``grid``, but the values are changed to reflect their place in the cumulative distribution. """
[docs]@staticmethod@fmt_docstring@use_alias(C="divisions",R="region",N="gaussian",Q="quadratic",V="verbose",h="header",)@kwargs_to_strings(R="sequence")defequalize_grid(grid,outgrid:str|None=None,**kwargs)->xr.DataArray|None:r""" Perform histogram equalization for a grid. :meth:`pygmt.grdhisteq.equalize_grid` provides a way to write a grid with statistics based on a cumulative distribution function. The ``outgrid`` has relative highs and lows in the same (x,y) locations as the ``grid``, but the values are changed to reflect their place in the cumulative distribution. Full option list at :gmt-docs:`grdhisteq.html` {aliases} Parameters ---------- {grid} {outgrid} divisions : int Set the number of divisions of the data range. gaussian : bool or int or float *norm*. Produce an output grid with standard normal scores using ``gaussian=True`` or force the scores to fall in the ±\ *norm* range. quadratic: bool Perform quadratic equalization [Default is linear]. {region} {verbose} Returns ------- ret Return type depends on the ``outgrid`` parameter: - :class:`xarray.DataArray` if ``outgrid`` is ``None`` - ``None`` if ``outgrid`` is a str (grid output is stored in ``outgrid``) Example ------- >>> import pygmt >>> # Load a grid of @earth_relief_30m data, with a longitude range >>> # of 10°E to 30°E, and a latitude range of 15°N to 25°N >>> grid = pygmt.datasets.load_earth_relief( ... resolution="30m", region=[10, 30, 15, 25] ... ) >>> # Create a new grid with a Gaussian data distribution >>> grid = pygmt.grdhisteq.equalize_grid(grid=grid, gaussian=True) See Also -------- :func:`pygmt.grd2cpt` Note ---- This method does a weighted histogram equalization for geographic grids to account for node area varying with latitude. """withSession()aslib:with(lib.virtualfile_in(check_kind="raster",data=grid)asvingrd,lib.virtualfile_out(kind="grid",fname=outgrid)asvoutgrd,):kwargs["G"]=voutgrdlib.call_module(module="grdhisteq",args=build_arg_list(kwargs,infile=vingrd))returnlib.virtualfile_to_raster(vfname=voutgrd,outgrid=outgrid)
[docs]@staticmethod@fmt_docstring@use_alias(C="divisions",R="region",N="gaussian",Q="quadratic",V="verbose",h="header",)@kwargs_to_strings(R="sequence")defcompute_bins(grid,output_type:Literal["pandas","numpy","file"]="pandas",outfile:str|None=None,**kwargs,)->pd.DataFrame|np.ndarray|None:r""" Perform histogram equalization for a grid. Histogram equalization provides a way to highlight data that has most values clustered in a small portion of the dynamic range, such as a grid of flat topography with a mountain in the middle. Ordinary gray shading of this grid (using :meth:`pygmt.Figure.grdimage` or :meth:`pygmt.Figure.grdview`) with a linear mapping from topography to graytone will result in most of the image being very dark gray, with the mountain being almost white. :meth:`pygmt.grdhisteq.compute_bins` can provide a list of data values that divide the data range into divisions which have an equal area in the image [Default is 16 if ``divisions`` is not set]. The :class:`pandas.DataFrame` or ASCII file output can be used to make a colormap with :func:`pygmt.makecpt` and an image with :meth:`pygmt.Figure.grdimage` that has all levels of gray occurring equally. Full option list at :gmt-docs:`grdhisteq.html` {aliases} Parameters ---------- {grid} {output_type} {outfile} divisions : int Set the number of divisions of the data range. quadratic : bool Perform quadratic equalization [Default is linear]. {region} {verbose} {header} Returns ------- ret Return type depends on ``outfile`` and ``output_type``: - ``None`` if ``outfile`` is set (output will be stored in file set by ``outfile``) - :class:`pandas.DataFrame` or :class:`numpy.ndarray` if ``outfile`` is not set (depends on ``output_type``) Example ------- >>> import pygmt >>> # Load a grid of @earth_relief_30m data, with a longitude range of >>> # 10° E to 30° E, and a latitude range of 15° N to 25° N >>> grid = pygmt.datasets.load_earth_relief( ... resolution="30m", region=[10, 30, 15, 25] ... ) >>> # Find elevation intervals that split the data range into 5 >>> # divisions, each of which have an equal area in the original grid. >>> bins = pygmt.grdhisteq.compute_bins(grid=grid, divisions=5) >>> print(bins) start stop bin_id 0 183.5 395.0 1 395.0 472.0 2 472.0 575.0 3 575.0 709.5 4 709.5 1807.0 See Also -------- :func:`pygmt.grd2cpt` Note ---- This method does a weighted histogram equalization for geographic grids to account for node area varying with latitude. """output_type=validate_output_table_type(output_type,outfile=outfile)ifkwargs.get("h")isnotNoneandoutput_type!="file":msg="'header' is only allowed with output_type='file'."raiseGMTInvalidInput(msg)withSession()aslib:with(lib.virtualfile_in(check_kind="raster",data=grid)asvingrd,lib.virtualfile_out(kind="dataset",fname=outfile)asvouttbl,):kwargs["D"]=vouttbl# -D for output file namelib.call_module(module="grdhisteq",args=build_arg_list(kwargs,infile=vingrd))returnlib.virtualfile_to_dataset(vfname=vouttbl,output_type=output_type,column_names=["start","stop","bin_id"],dtype={"start":np.float32,"stop":np.float32,"bin_id":np.uint32,},index_col="bin_id"ifoutput_type=="pandas"elseNone,)