"""sphinterpolate - Spherical gridding in tension of data on a sphere"""importxarrayasxrfrompygmt.clibimportSessionfrompygmt.helpersimportbuild_arg_list,fmt_docstring,kwargs_to_strings,use_alias__doctest_skip__=["sphinterpolate"]
[docs]@fmt_docstring@use_alias(I="spacing",R="region",V="verbose",)@kwargs_to_strings(I="sequence",R="sequence")defsphinterpolate(data,outgrid:str|None=None,**kwargs)->xr.DataArray|None:r""" Create spherical grid files in tension of data. Reads a table containing *lon, lat, z* columns and performs a Delaunay triangulation to set up a spherical interpolation in tension. Several options may be used to affect the outcome, such as choosing local versus global gradient estimation or optimize the tension selection to satisfy one of four criteria. Full option list at :gmt-docs:`sphinterpolate.html` {aliases} Parameters ---------- data : str, {table-like} Pass in (x, y, z) or (longitude, latitude, elevation) values by providing a file name to an ASCII data table, a 2-D {table-classes}. {outgrid} {spacing} {region} {verbose} Returns ------- ret Return type depends on whether the ``outgrid`` parameter is set: - :class:`xarray.DataArray` if ``outgrid`` is not set - None if ``outgrid`` is set (grid output will be stored in file set by ``outgrid``) Example ------- >>> import pygmt >>> # Load a table of Mars with longitude/latitude/radius columns >>> mars_shape = pygmt.datasets.load_sample_data(name="mars_shape") >>> # Perform Delaunay triangulation on the table data >>> # to produce a grid with a 1 arc-degree spacing >>> grid = pygmt.sphinterpolate(data=mars_shape, spacing=1, region="g") """withSession()aslib:with(lib.virtualfile_in(check_kind="vector",data=data)asvintbl,lib.virtualfile_out(kind="grid",fname=outgrid)asvoutgrd,):kwargs["G"]=voutgrdlib.call_module(module="sphinterpolate",args=build_arg_list(kwargs,infile=vintbl))returnlib.virtualfile_to_raster(vfname=voutgrd,outgrid=outgrid)