"""
grdview - Create a three-dimensional plot from a grid.
"""
from pygmt.clib import Session
from pygmt.helpers import build_arg_list, fmt_docstring, kwargs_to_strings, use_alias
__doctest_skip__ = ["grdview"]
@fmt_docstring
@use_alias(
R="region",
J="projection",
Jz="zscale",
JZ="zsize",
B="frame",
C="cmap",
G="drapegrid",
N="plane",
Q="surftype",
Wc="contourpen",
Wm="meshpen",
Wf="facadepen",
I="shading",
V="verbose",
c="panel",
f="coltypes",
n="interpolation",
p="perspective",
t="transparency",
)
@kwargs_to_strings(R="sequence", c="sequence_comma", p="sequence")
def grdview(self, grid, **kwargs):
r"""
Create 3-D perspective image or surface mesh from a grid.
Reads a 2-D grid file and produces a 3-D perspective plot by drawing a
mesh, painting a colored/gray-shaded surface made up of polygons, or by
scanline conversion of these polygons to a raster image. Options
include draping a data set on top of a surface, plotting of contours on
top of the surface, and apply artificial illumination based on
intensities provided in a separate grid file.
Full option list at :gmt-docs:`grdview.html`
{aliases}
Parameters
----------
{grid}
region : str or list
*xmin/xmax/ymin/ymax*\ [**+r**][**+u**\ *unit*].
Specify the :doc:`region </tutorials/basics/regions>` of interest.
When used with ``perspective``, optionally append */zmin/zmax* to
indicate the range to use for the 3-D axes [Default is the region in
the input grid].
{projection}
zscale/zsize : float or str
Set z-axis scaling or z-axis size.
{frame}
cmap : str
The name of the color palette table to use.
drapegrid : str or :class:`xarray.DataArray`
The file name or a DataArray of the image grid to be draped on top
of the relief provided by ``grid`` [Default determines colors from grid].
Note that ``zscale`` and ``plane`` always refer to the grid.
The drapegrid only provides the information pertaining to colors, which
(if drapegrid is a grid) will be looked-up via the CPT (see ``cmap``).
plane : float or str
*level*\ [**+g**\ *fill*].
Draw a plane at this z-level. If the optional color is provided
via the **+g** modifier, and the projection is not oblique, the frontal
facade between the plane and the data perimeter is colored.
surftype : str
Specify cover type of the grid.
Select one of following settings:
- **m** - mesh plot [Default].
- **mx** or **my** - waterfall plots (row or column profiles).
- **s** - surface plot, and optionally append **m** to have mesh lines
drawn on top of the surface.
- **i** - image plot.
- **c** - Same as **i** but will make nodes with z = NaN transparent.
For any of these choices, you may force a monochrome image by
appending the modifier **+m**.
contourpen : str
Draw contour lines on top of surface or mesh (not image). Append
pen attributes used for the contours.
meshpen : str
Set the pen attributes used for the mesh. You must also select
``surftype`` of **m** or **sm** for meshlines to be drawn.
facadepen :str
Set the pen attributes used for the facade. You must also select
``plane`` for the facade outline to be drawn.
shading : str
Provide the name of a grid file with intensities in the (-1,+1)
range, or a constant intensity to apply everywhere (affects the
ambient light). Alternatively, derive an intensity grid from the
input data grid reliefgrid via a call to :func:`pygmt.grdgradient`;
append **+a**\ *azimuth*, **+n**\ *args*, and **+m**\ *ambient* to
specify azimuth, intensity, and ambient arguments for that function,
or just give **+d** to select the default arguments
[Default is **+a**\ -45\ **+nt**\ 1\ **+m**\ 0].
{verbose}
{panel}
{coltypes}
{interpolation}
{perspective}
{transparency}
Example
-------
>>> import pygmt
>>> # load the 30 arc-minutes grid with "gridline" registration
>>> # in a specified region
>>> grid = pygmt.datasets.load_earth_relief(
... resolution="30m",
... region=[-92.5, -82.5, -3, 7],
... registration="gridline",
... )
>>> # create a new figure instance with pygmt.Figure()
>>> fig = pygmt.Figure()
>>> # create the contour plot
>>> fig.grdview(
... # pass in the grid downloaded above
... grid=grid,
... # set the perspective to an azimuth of 130° and an elevation of 30°
... perspective=[130, 30],
... # add a frame to the x- and y-axes
... # specify annotations on the south and east borders of the plot
... frame=["xa", "ya", "wSnE"],
... # set the projection of the 2-D map to Mercator with a 10 cm width
... projection="M10c",
... # set the vertical scale (z-axis) to 2 cm
... zsize="2c",
... # set "surface plot" to color the surface via a CPT
... surftype="s",
... # specify CPT to "geo"
... cmap="geo",
... )
>>> # show the plot
>>> fig.show()
"""
kwargs = self._preprocess(**kwargs)
with Session() as lib:
with (
lib.virtualfile_in(check_kind="raster", data=grid) as vingrd,
lib.virtualfile_in(
check_kind="raster", data=kwargs.get("G"), required_data=False
) as vdrapegrid,
):
kwargs["G"] = vdrapegrid
lib.call_module(
module="grdview", args=build_arg_list(kwargs, infile=vingrd)
)