"""
filter1d - Time domain filtering of 1-D data tables
"""
import warnings
import pandas as pd
from pygmt.clib import Session
from pygmt.exceptions import GMTInvalidInput
from pygmt.helpers import GMTTempFile, build_arg_string, fmt_docstring, use_alias
[docs]@fmt_docstring
@use_alias(
E="end",
F="filter_type",
N="time_col",
)
def filter1d(data, output_type="pandas", outfile=None, **kwargs):
r"""
Time domain filtering of 1-D data tables.
A general time domain filter for multiple column time
series data. The user specifies which column is the time (i.e., the
independent variable) via ``time_col``. The fastest operation
occurs when the input time series are equally spaced and have no gaps or
outliers and the special options are not needed.
Read a table and output as a :class:`numpy.ndarray`,
:class:`pandas.DataFrame`, or ASCII file.
Full option list at :gmt-docs:`filter1d.html`
{aliases}
Parameters
----------
filter_type : str
**type**\ *width*\ [**+h**].
Set the filter **type**. Choose among convolution and non-convolution
filters. Append the filter code followed by the full filter
*width* in same units as time column. By default, this
performs a low-pass filtering; append **+h** to select high-pass
filtering. Some filters allow for optional arguments and a modifier.
Available convolution filter types are:
- (**b**) Boxcar: All weights are equal.
- (**c**) Cosine Arch: Weights follow a cosine arch curve.
- (**g**) Gaussian: Weights are given by the Gaussian function.
- (**f**) Custom: Instead of *width* give name of a one-column file
with your own weight coefficients.
Non-convolution filter types are:
- (**m**) Median: Returns median value.
- (**p**) Maximum likelihood probability (a mode estimator): Return
modal value. If more than one mode is found we return their average
value. Append **+l** or **+u** if you rather want
to return the lowermost or uppermost of the modal values.
- (**l**) Lower: Return the minimum of all values.
- (**L**) Lower: Return minimum of all positive values only.
- (**u**) Upper: Return maximum of all values.
- (**U**) Upper: Return maximum of all negative values only.
Upper case type **B**, **C**, **G**, **M**, **P**, **F** will use
robust filter versions: i.e., replace outliers (2.5 L1 scale off
median, using 1.4826 \* median absolute deviation [MAD]) with median
during filtering.
In the case of **L**\|\ **U** it is possible that no data passes
the initial sign test; in that case the filter will return 0.0.
Apart from custom coefficients (**f**), the other filters may accept
variable filter widths by passing *width* as a two-column time-series
file with filter widths in the second column. The filter-width file
does not need to be co-registered with the data as we obtain the
required filter width at each output location via interpolation. For
multi-segment data files the filter file must either have the same
number of segments or just a single segment to be used for all data
segments.
end : bool
Include ends of time series in output. The default [False] loses
half the filter-width of data at each end.
time_col : int
Indicate which column contains the independent variable (time). The
left-most column is 0, while the right-most is (*n_cols* - 1)
[Default is ``0``].
output_type : str
Determine the format the xyz data will be returned in [Default is
``pandas``]:
- ``numpy`` - :class:`numpy.ndarray`
- ``pandas``- :class:`pandas.DataFrame`
- ``file`` - ASCII file (requires ``outfile``)
outfile : str
The file name for the output ASCII file.
Returns
-------
ret : pandas.DataFrame or numpy.ndarray or None
Return type depends on ``outfile`` and ``output_type``:
- None if ``outfile`` is set (output will be stored in file set by
``outfile``)
- :class:`pandas.DataFrame` or :class:`numpy.ndarray` if ``outfile`` is
not set (depends on ``output_type`` [Default is
:class:`pandas.DataFrame`])
"""
if kwargs.get("F") is None:
raise GMTInvalidInput("Pass a required argument to 'filter_type'.")
if output_type not in ["numpy", "pandas", "file"]:
raise GMTInvalidInput("Must specify format as either numpy, pandas, or file.")
if outfile is not None and output_type != "file":
msg = (
f"Changing `output_type` of filter1d from '{output_type}' to 'file' "
"since `outfile` parameter is set. Please use `output_type='file'` "
"to silence this warning."
)
warnings.warn(msg, category=RuntimeWarning, stacklevel=2)
output_type = "file"
elif output_type == "file" and outfile is None:
raise GMTInvalidInput("Must specify outfile for ASCII output.")
with GMTTempFile() as tmpfile:
with Session() as lib:
file_context = lib.virtualfile_from_data(check_kind="vector", data=data)
with file_context as infile:
if outfile is None:
outfile = tmpfile.name
lib.call_module(
module="filter1d",
args=build_arg_string(kwargs, infile=infile, outfile=outfile),
)
# Read temporary csv output to a pandas table
if outfile == tmpfile.name: # if user did not set outfile, return pd.DataFrame
result = pd.read_csv(tmpfile.name, sep="\t", comment=">")
elif outfile != tmpfile.name: # return None if outfile set, output in outfile
result = None
if output_type == "numpy":
result = result.to_numpy()
return result