"""
grdfilter - Filter a grid in the space (or time) domain.
"""
import xarray as xr
from pygmt.clib import Session
from pygmt.helpers import build_arg_list, fmt_docstring, kwargs_to_strings, use_alias
[docs]
@fmt_docstring
@use_alias(
D="distance",
F="filter",
I="spacing",
N="nans",
R="region",
T="toggle",
V="verbose",
f="coltypes",
r="registration",
x="cores",
)
@kwargs_to_strings(I="sequence", R="sequence")
def grdfilter(grid, outgrid: str | None = None, **kwargs) -> xr.DataArray | None:
r"""
Filter a grid in the space (or time) domain.
Filter a grid file in the space (or time) domain using one of the selected
convolution or non-convolution isotropic or rectangular filters and compute
distances using Cartesian or Spherical geometries. The output grid file
can optionally be generated as a sub-region of the input (via ``region``)
and/or with new increment (via ``spacing``) or registration
(via ``toggle``). In this way, one may have "extra space" in the input
data so that the edges will not be used and the output can be within one
half-width of the input edges. If the filter is low-pass, then the output
may be less frequently sampled than the input.
Full option list at :gmt-docs:`grdfilter.html`
{aliases}
Parameters
----------
{grid}
{outgrid}
filter : str
**b**\|\ **c**\|\ **g**\|\ **o**\|\ **m**\|\ **p**\|\ **h**\ *width*\
[/*width2*\][*modifiers*].
Name of the filter type you wish to apply, followed by the *width*:
- **b**: Box Car
- **c**: Cosine Arch
- **g**: Gaussian
- **o**: Operator
- **m**: Median
- **p**: Maximum Likelihood probability
- **h**: Histogram
distance : str
State how the grid (x,y) relates to the filter *width*:
- ``"p"``: grid (px,py) with *width* an odd number of pixels,
Cartesian distances.
- ``"0"``: grid (x,y) same units as *width*, Cartesian distances.
- ``"1"``: grid (x,y) in degrees, *width* in kilometers, Cartesian
distances.
- ``"2"``: grid (x,y) in degrees, *width* in km, dx scaled by
cos(middle y), Cartesian distances.
The above options are fastest because they allow weight matrix to be
computed only once. The next three options are slower because they
recompute weights for each latitude.
- ``"3"``: grid (x,y) in degrees, *width* in km, dx scaled by cos(y),
Cartesian distance calculation.
- ``"4"``: grid (x,y) in degrees, *width* in km, Spherical distance
calculation.
- ``"5"``: grid (x,y) in Mercator ``projection="m1"`` img units,
*width* in km, Spherical distance calculation.
{spacing}
nans : str or float
**i**\|\ **p**\|\ **r**.
Determine how NaN-values in the input grid affect the filtered output.
Use **i** to ignore all NaNs in the calculation of the filtered value
[Default]. **r** is same as **i** except if the input node was NaN then
the output node will be set to NaN (only applies if both grids are
co-registered). **p** will force the filtered value to be NaN if any
grid nodes with NaN-values are found inside the filter circle.
{region}
toggle : bool
Toggle the node registration for the output grid to get the opposite of
the input grid [Default gives the same registration as the input grid].
{verbose}
{coltypes}
{registration}
{cores}
Returns
-------
ret
Return type depends on whether the ``outgrid`` parameter is set:
- :class:`xarray.DataArray` if ``outgrid`` is not set
- ``None`` if ``outgrid`` is set (grid output will be stored in the file set by
``outgrid``)
Examples
--------
>>> from pathlib import Path
>>> import pygmt
>>> # Apply a filter of 600 km (full width) to the @earth_relief_30m_g file
>>> # and return a filtered field (saved as netCDF)
>>> pygmt.grdfilter(
... grid="@earth_relief_30m_g",
... filter="m600",
... distance="4",
... region=[150, 250, 10, 40],
... spacing=0.5,
... outgrid="filtered_pacific.nc",
... )
>>> Path("filtered_pacific.nc").unlink() # Cleanup file
>>> # Apply a Gaussian smoothing filter of 600 km to the input DataArray
>>> # and return a filtered DataArray with the smoothed field
>>> grid = pygmt.datasets.load_earth_relief()
>>> smooth_field = pygmt.grdfilter(grid=grid, filter="g600", distance="4")
"""
with Session() as lib:
with (
lib.virtualfile_in(check_kind="raster", data=grid) as vingrd,
lib.virtualfile_out(kind="grid", fname=outgrid) as voutgrd,
):
kwargs["G"] = voutgrd
lib.call_module(
module="grdfilter", args=build_arg_list(kwargs, infile=vingrd)
)
return lib.virtualfile_to_raster(vfname=voutgrd, outgrid=outgrid)