"""
Function to load raster tile maps from XYZ tile providers, and load as
:class:`xarray.DataArray`.
"""
from collections.abc import Sequence
from typing import Literal
from packaging.version import Version
try:
import contextily
from rasterio.crs import CRS
from xyzservices import TileProvider
_HAS_CONTEXTILY = True
except ImportError:
CRS = None
TileProvider = None
_HAS_CONTEXTILY = False
try:
import rioxarray # noqa: F401
_HAS_RIOXARRAY = True
except ImportError:
_HAS_RIOXARRAY = False
import numpy as np
import xarray as xr
__doctest_requires__ = {("load_tile_map"): ["contextily"]}
[docs]
def load_tile_map(
region: Sequence[float],
zoom: int | Literal["auto"] = "auto",
source: TileProvider | str | None = None,
lonlat: bool = True,
crs: str | CRS = "EPSG:3857",
wait: int = 0,
max_retries: int = 2,
zoom_adjust: int | None = None,
) -> xr.DataArray:
"""
Load a georeferenced raster tile map from XYZ tile providers.
The tiles that compose the map are merged and georeferenced into an
:class:`xarray.DataArray` image with 3 bands (RGB). Note that the returned image is
in a Spherical Mercator (EPSG:3857) coordinate reference system (CRS) by default,
but can be customized using the ``crs`` parameter.
Parameters
----------
region
The bounding box of the map in the form of a list [*xmin*, *xmax*, *ymin*,
*ymax*]. These coordinates should be in longitude/latitude if ``lonlat=True`` or
Spherical Mercator (EPSG:3857) if ``lonlat=False``.
zoom
Level of detail. Higher levels (e.g. ``22``) mean a zoom level closer to the
Earth's surface, with more tiles covering a smaller geographical area and thus
more detail. Lower levels (e.g. ``0``) mean a zoom level further from the
Earth's surface, with less tiles covering a larger geographical area and thus
less detail. Default is ``"auto"`` to automatically determine the zoom level
based on the bounding box region extent.
.. note::
The maximum possible zoom level may be smaller than ``22``, and depends on
what is supported by the chosen web tile provider source.
source
The tile source: web tile provider or path to a local file. Provide either:
- A web tile provider in the form of a :class:`xyzservices.TileProvider` object.
See :doc:`Contextily providers <contextily:providers_deepdive>` for a list of
tile providers. Default is ``xyzservices.providers.OpenStreetMap.HOT``, i.e.
OpenStreetMap Humanitarian web tiles.
- A web tile provider in the form of a URL. The placeholders for the XYZ in the
URL need to be {x}, {y}, {z}, respectively. E.g.
``https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png``.
- A local file path. The file is read with :doc:`rasterio <rasterio:index>` and
all bands are loaded into the basemap. See
:doc:`contextily:working_with_local_files`.
.. important::
Tiles are assumed to be in the Spherical Mercator projection (EPSG:3857).
lonlat
If ``False``, coordinates in ``region`` are assumed to be Spherical Mercator as
opposed to longitude/latitude.
crs
Coordinate reference system (CRS) of the returned :class:`xarray.DataArray`
image. Default is ``"EPSG:3857"`` (i.e., Spherical Mercator). The CRS can be in
either string or :class:`rasterio.crs.CRS` format.
wait
If the tile API is rate-limited, the number of seconds to wait between a failed
request and the next try.
max_retries
Total number of rejected requests allowed before contextily will stop trying to
fetch more tiles from a rate-limited API.
zoom_adjust
The amount to adjust a chosen zoom level if it is chosen automatically. Values
outside of -1 to 1 are not recommended as they can lead to slow execution.
.. note::
The ``zoom_adjust`` parameter requires ``contextily>=1.5.0``.
Returns
-------
raster
Georeferenced 3-D data array of RGB values.
Raises
------
ImportError
If ``contextily`` is not installed or can't be imported. Follow the
:doc:`install instructions for contextily <contextily:index>`, (e.g. via
``python -m pip install contextily``) before using this function.
Examples
--------
>>> import contextily
>>> from pygmt.datasets import load_tile_map
>>> raster = load_tile_map(
... region=[-180.0, 180.0, -90.0, 0.0], # West, East, South, North
... zoom=1, # less detailed zoom level
... source=contextily.providers.OpenTopoMap,
... lonlat=True, # bounding box coordinates are longitude/latitude
... )
>>> raster.sizes
Frozen({'band': 3, 'y': 256, 'x': 512})
>>> raster.coords # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Coordinates:
* band (band) uint8... 1 2 3
* y (y) float64... -7.081e-10 -7.858e+04 ... -1.996e+07 -2.004e+07
* x (x) float64... -2.004e+07 -1.996e+07 ... 1.996e+07 2.004e+07
spatial_ref int... 0
>>> # CRS is set only if rioxarray is available
>>> if hasattr(raster, "rio"):
... raster.rio.crs.to_string()
'EPSG:3857'
"""
# The CRS of the source tile provider. If the source is a TileProvider object, use
# its crs attribute if available. Otherwise, default to EPSG:3857.
_source_crs = getattr(source, "crs", "EPSG:3857")
if not _HAS_CONTEXTILY:
msg = (
"Package `contextily` is required to be installed to use this function. "
"Please use `python -m pip install contextily` or "
"`mamba install -c conda-forge contextily` to install the package."
)
raise ImportError(msg)
if crs != _source_crs and not _HAS_RIOXARRAY:
msg = (
f"Package `rioxarray` is required if CRS is not '{_source_crs}'. "
"Please use `python -m pip install rioxarray` or "
"`mamba install -c conda-forge rioxarray` to install the package."
)
raise ImportError(msg)
# Keyword arguments for contextily.bounds2img
contextily_kwargs = {
"zoom": zoom,
"source": source,
"ll": lonlat,
"wait": wait,
"max_retries": max_retries,
}
if zoom_adjust is not None:
if Version(contextily.__version__) < Version("1.5.0"):
msg = (
"The `zoom_adjust` parameter requires `contextily>=1.5.0` to work. "
"Please upgrade contextily, or manually set the `zoom` level instead."
)
raise ValueError(msg)
contextily_kwargs["zoom_adjust"] = zoom_adjust
west, east, south, north = region
image, extent = contextily.bounds2img(
w=west, s=south, e=east, n=north, **contextily_kwargs
)
# Turn RGBA img from channel-last to channel-first and get 3-band RGB only
_image = image.transpose(2, 0, 1) # Change image from (H, W, C) to (C, H, W)
rgb_image = _image[0:3, :, :] # Get just RGB by dropping RGBA's alpha channel
# Georeference RGB image into an xarray.DataArray
left, right, bottom, top = extent
dataarray = xr.DataArray(
data=rgb_image,
coords={
"band": np.array(object=[1, 2, 3], dtype=np.uint8), # Red, Green, Blue
"y": np.linspace(start=top, stop=bottom, num=rgb_image.shape[1]),
"x": np.linspace(start=left, stop=right, num=rgb_image.shape[2]),
},
dims=("band", "y", "x"),
)
# If rioxarray is installed, set the coordinate reference system.
if hasattr(dataarray, "rio"):
dataarray = dataarray.rio.write_crs(input_crs=_source_crs)
# Reproject raster image from the source CRS to the specified CRS.
if crs != _source_crs:
dataarray = dataarray.rio.reproject(dst_crs=crs)
return dataarray